Nucleic Acid Methods & Synthesis
Nucleic acid methods are the techniques used to study nucleic acids: DNA and RNA. Nucleotides can be separated into purines and pyrimidines. They are both primarily produced in the liver. They both contain a sugar and a phosphate, but have nitrogenous bases that are different sizes. Because of this, the two different groups are synthesized in different ways. However, all nucleotide synthesis requires the use of phosphoribosyl pyrophosphate (PRPP) which donates the ribose and phosphate necessary to create a nucleotide.
- Purification & Quantification
- Kinetics & Gene function
- Oligonucleotide synthesis
Related Conference of Nucleic Acid Methods & Synthesis
October 13-14, 2025
17th International Conference on Tissue Science and Regenerative Medicine
Rome, Italy
Nucleic Acid Methods & Synthesis Conference Speakers
Recommended Sessions
- Case Reports
- Computational Molecular Biology
- DNA Damage and Repair
- DNA Replication and Recombination
- Molecular & Cellular Medicine
- Molecular Biology
- Molecular Biology Techniques
- Molecular Engineering & Modelling
- Molecular Genetics
- Molecular Microbiology & Biologics
- Nucleic Acid Methods & Synthesis
- Personalized Healthcare
- Recombinant DNA Technologies
- RNA & DNA Nanotechnology
- RNA Editing and Interference
- RNA Processing and Protein Synthesis
- Sequencing & Microarrays
- Thermodynamics of Nucleic Acid
Related Journals
Are you interested in
- 3-D Structure Determination - Structural Biology 2025 (Germany)
- 3D Structure Determination - Structural Biology-2025 (France)
- Advanced Techniques in Structural Biology - Structural Biology-2025 (France)
- Advancements in structural Biology - Structural Biology 2025 (Germany)
- AI & Computational Structural Biology - Structural Biology-2025 (France)
- Biochemistry and Biophysics - Structural Biology-2025 (France)
- Biochemistry and Biophysics - Structural Biology 2025 (Germany)
- Computational Approach in Structural Biology - Structural Biology-2025 (France)
- Computational Approach in Structural Biology - Structural Biology 2025 (Germany)
- Drug Designing and Biomarkers - Structural Biology-2025 (France)
- Drug Designing and Biomarkers - Structural Biology 2025 (Germany)
- Frontiers in Structural Biology - Structural Biology 2025 (Germany)
- Gene Regulation and Cell Signaling - Structural Biology 2025 (Germany)
- Hybrid Approaches for Structure Prediction - Structural Biology-2025 (France)
- Hybrid Approaches in Structure Prediction - Structural Biology 2025 (Germany)
- Membrane Proteins and Receptors - Structural Biology-2025 (France)
- Molecular Biology - Structural Biology 2025 (Germany)
- Molecular Biology Techniques - Structural Biology 2025 (Germany)
- Molecular Modelling and Dynamics - Structural Biology-2025 (France)
- Molecular Modelling and Dynamics - Structural Biology 2025 (Germany)
- Proteomics and Genomics - Structural Biology 2025 (Germany)
- Proteomics and Genomics - Structural Biology-2025 (France)
- Sequencing Analysis - Structural Biology 2025 (Germany)
- Structural Bioinformatics - Structural Biology 2025 (Germany)
- Structural Bioinformatics and Computational Biology - Structural Biology-2025 (France)
- Structural Biology - Structural Biology 2025 (Germany)
- Structural Biology Databases - Structural Biology 2025 (Germany)
- Structural Biology in Cancer Research - Structural Biology-2025 (France)
- Structural Biology in Cancer Research - Structural Biology 2025 (Germany)
- Structural Enzymology - Structural Biology 2025 (Germany)
- Structural Virology - Structural Biology-2025 (France)
- Structural Virology and Infectious Diseases - Structural Biology-2025 (France)
- Structure-Based Drug Discovery - Structural Biology-2025 (France)
- Structure-Based Solutions to Global Health Challenges - Structural Biology-2025 (France)
- Structure-Function Relationships - Structural Biology-2025 (France)
- The Structural Basis of Disease - Structural Biology-2025 (France)